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MIN-MAX RELATIONS FOR DIRECTED GRAPHS*

A. SCHRIJVER

Instituut voor Actuariaat en Econometrie, Universiteit van Amsterdam, Jodenbreestraat 23,
Amsterdam, Holland

We prove the following. Let D = (V, A) and D’ = (V, A’) be directed graphs, both with
vertex set V, where D' is acyclic such that each pair of source and sink of D’ is connected by
a directed path in D’. Suppose that each nonempty proper subset of V which is not entered
by any arrow of D, is entered by at least k arrows of D. Then A can be split into classes
Ay, . .., Ay such that the directed graph (V, A’ U A;) is strongly connected, for each i.

This theorem contains as special cases Menger’s theorem, Gupta’s theorem, Edmonds’
branching theorem, a ‘bi-branching theorem’, a special case of a conjecture of Edmonds and
Giles, and a theorem of Frank. The proof yields a polynomial algorithm for finding the
splitting as required.

Besides, a slight extension of the Lucchesi-Younger theorem is given.

0. Introduction

Let D =(V, A) and D' = (V, A’) be directed graphs, both with vertex set V.
Call a subset A" of A a strong comnector (for D') if the directed graph
(V, A"U A") is strongly connected. If V' is a nonempty proper subset of V such
that no arrow of D’ enters V', the set of arrows of D entering V' is called a
strong cut (induced by D").

We prove the following theorem.

If D' is acyclic and each pair of source and sink of D' is
connected by a directed path in D', then the maximum number of
pairwise disjoint strong connectors for D' is equal to the
minimum size of a strong cut induced by D'.

©.1)

This min—max relation has the following corollaries.

(i) Menger’s theorem [19]. Let r and s be two vertices of the directed graph
D = (V, A). If no set with less than k arrows intersects each directed path from
r to s, then there are k pairwise arrow-disjoint such paths. This follows from
(0.1) by taking A'={(v,w)|v==s or w=r}. A subset A” of A is a strong
connector for D' = (V, A') if and only if A" contains a path from r to s.
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262 A. Schrijver

(ii) Gupta’s theorem [11]. Let G = (V, E) be a bipartite graph of minimum
degree k. Then E contains k pairwise disjoint subsets, each covering V. For, if
V' and V" are the two colour classes of G, let D arise from G by orienting all
edges of G from V" to V', and let A’ ={(v’,v")|v'€ V', v"€ V"}. Now a
subset A” of A is a strong connector for D’ if and only if A" covers V.

(iii) Edmonds’ branching theorem [2]. Let D = (V, A) be a directed graph,
and let r be a vertex of D. If each nonempty subset of V\{r} is entered by at
least k arrows of D, then A contains k pairwise disjoint r-branchings. Here an
r-branching is a set A” of arrows such that each vertex of D is reachable by a
directed path from r in A”. The result follows from (0.1) by taking A'=
{(v,r)|v€ V\{r}}. Then A” is an r-branching if and only if A” is a strong
connector for D'.

(iv) A bi-branching theorem. Let D' = (V, A) be a directed graph, and let V
be split into classes V' and V”. Suppose each nonempty subset of V' is entered
by at least k arrows, and each nonempty subset of V" is left by at least k
arrows. Then A contains k pairwise disjoint bi-branchings. Here a subset A" of
A is called a bi-branching (with respect to the splitting V’, V") if each vertex in
V" is the end point of some directed path in A” starting in V”, and each vertex
in V" is the starting point of some directed path in A” ending in V’. So for
V”={r} we obtain r-branchings. The result follows from (0.1) by taking
A'={(v',v")|v'€ V', v"€ V"}. Then A" is a bi-branching if and only if A”is a
strong connector for D’.

(v) A special case of a conjecture of Edmonds and Giles [3]. Let D' = (V, A")
be a directed graph, and let C be a subset of A’ such that each directed cut of
D' contains at least k arrows of C. (A directed cut is the set of arrows entering
some nonempty proper subset V' of V| provided that no arrow leaves V'.)
Edmonds and Giles conjectured that C can be split into k classes Ci, ..., G
such that each C; intersects each directed cut (i.e., such that contracting the
arrows in C; makes D’ strongly connected). Although the general conjecture
appeared to be not true (cf. [20]), in the special case that D’ is acyclic and each
pair of source and sink of D’ is connected by a directed path, the conjecture
follows from (0.1) by taking A to be the collection of arrows in C with reversed
orientation. Then a subset of A is a strong connector for D’ if and only if the
corresponding subset of C intersects each directed cut of D’. (This special case
of the conjecture was announced independently by D.H. Younger.)

(vi) A theorem of Frank [5]. Let D = (V, A) be a directed graph, let r be a
vertex of D, and let & be a collection of subsets of V\{r} closed under taking
unions and intersections. Suppose that each nonempty set in & is entered by at
least k arrows in D. Then A can be split into classes Ay, ..., A, such that each
nonempty set in & is entered by at least one arrow in each of the A; This
follows from (0.1) by taking A’ to be the set of all pairs (v, w) which do not
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enter any set in &. (Possibly D’ is made acyclic by contracting strong com-
ponents.) Actually, Frank proved the more general result where it suffices to
require ¥ to be closed under taking unions and intersections of intersecting sets
in &.

Remark. The condition of D' being acyclic is not essential. Requiring D’ to
satisfy the conditions after contracting its strong components is sufficient.
Actually, it is not difficult to see that (0.1) is equivalent to: let D = (V, A) be a
directed graph, and let % be a collection of subsets of V closed under taking
unions and intersections, such that no Vi, V,, Vi in #\{, V} have VN V,N
Vi=0 and V,U V,U V3= V. If each set in F\{@, V} is entered by at least k
arrows of D, then A contains k pairwise disjoint sets Ay, ..., A, such that each
set in #\{@, V} is entered by an arrow in each A,

The corollaries (i)—(vi) are not independent; one easily derives the following
implications: (iv) = (iii) = (i), (vi) > (iii), (iv) = (ii), and (v) > (ii). In fact, our
proof essentially shows some more implications.

In Section 1 we first give, for the sake of completeness, a proof of Edmonds’
branching theorem (iii), by slightly adapting the proof of Lovasz [16]. Second,
in Section 2, we prove the following general theorem on pairs of submodular
functions. (A function f defined on the subsets of a set X is called submodular
if f(X)+f(X")=f(X'NX")+ f(X'U X") for all subsets X’ and X" of X.)

Let f, and f> be integral submodular set-functions on a set X,

such that f(X') = max{| X'|, k} for each nonempty subset X' of X,

and i =1,2. Then X can be split into classes X,, . . ., X such 0.2)
that f;(X')= =k, max{| X' N X]|, 1} for each nonempty subset X'

of Xand i=1,2.

Actually, this is a theorem on the splitting of vectors in polymatroids (cf. [1]
and the remark in Section 2). It generalizes the edge-colouring theorems of
Ko6nig [13] and Gupta [11] in a similar way as Edmonds’ matroid intersection
theorem (1] generalizes the Konig-Egervary theorem [4, 14] on matchings in
bipartite graphs.

Third, in Section 3, we show that (0.2) allows us to glue branchings together
to form bi-branchings, and thus to extend (iii) to (iv). In Section 4 we deduce,
with some induction arguments, (v) from (iv). Finally, in Section 5, we apply a
direct construction to obtain the general Theorem (0.1) from (v). Note that, by
replacing arrows by parallel arrows, one easily obtains a ‘weighted’ version of
0.1).

In Section 6 we use this last ‘direct construction’ also to observe that the
following can be derived from the Lucchesi-Younger theorem [18].
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LetD=(V,A)and D'=(V, A’) be directed graphs, such that

for any arrow (v, w) of D there are vertices v’ and w' in 'V, and

directed paths in D' from v to v', from w' to v', and from w' tow

(cf. Fig. 1, where the wriggled lines stand for directed paths in 03)
D'). Let | : A—>Z ., be some ‘length’ function. Then the mini-

mum length of a strong connector for D' is equal to the maximum

number of strong cuts induced by D' such that no arrow a is in

more than l(a) of these strong culs.

Fig. 1.

If A is the collection of reversed arrows of D', the assumption is obviously
satisfied and assertion (0.3) is just the Lucchesi~Younger theorem. If D’ is as in
(i), (i), (ii1) and (iv) above, we obtain, successively, an (easy) theorem of
Fulkerson [7], Konig’s theorem on minimum coverings in a bipartite graph [15],
Fulkerson’s branching theorem [9], and another ‘bi-branching theorem’: if the
vertex set V of the directed graph D = (V, A) is split into classes V' and V7,
and if c: A-7Z, is some capacity function, then the minimum capacity of a
bi-branching is equal to the maximum number of nonempty proper subsets
Vi, ..., Vi of Vsuch that V;C V' or V' C V; for each i, and no arrow a of D
enters more than c(a) of the Vi

The conditions for D and D’ given in (0.3) are less restrictive than those
given in (0.1). In fact, for acyclic D', there is a directed path between each pair
of source and sink, if and only if each pair (v, w) of vertices of D' is connected
by a path of the form of the wriggled lines in Fig. 1. In (0.1) we may not relax
the conditions on D’ to those given in (0.3), as is shown by the counterexample
to the conjecture of Edmonds and Giles (cf. (iv) above). Moreover, if D =
(V,A) and D' = (V, A') are as in Fig. 2, where light and heavy lines represent
the arrows of D and D', respectively, then any strong connector for 1D’ has
cardinality at least 3, whereas any strong cut induced by D' contains at least 2

Fig. 2.
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arrows of D. Since |A| =5, it is not sufficient to require in (0.1) or (0.3) D' to be
weakly connected.

In Section 7 we discuss some generalizations of the results, in terms of sub-
and supermodular functions defined on directed graphs, following the lines set
out by Edmonds and Giles [3] and Frank [5]. In fact, we give a generalization
of (0.3) which slightly extends the theorem of Frank. We also comment on
similar extensions of (0.1) and (0.2).

Finally, in Section 8, we formulate the results in terms of polyhedra and
linear programming, and this yields, by the ellipsoid method as described in
[10], the polynomial solvability of most of the problems. Besides, our proof of
(0.1) and (0.2) above will be polynomially constructive (using the fact that the
minimum value of a submodular set-function can be found in polynomial time
[10]), yielding a polynomial algorithm for optimum packing of strong con-
nectors.

Some terminology. Above we gave already the, rather standard, definitions of
submodular function, r-branching and directed cut, and we introduced the notion
of bi-branching. A function g is supermodular if —g is submodular. We shall
sometimes use the easy observation that if f is a submodular, and g is a
supermodular set-function on X with g(X')<f(X") for all X’'C X, then the
collection of sets X' with g(X’)= f(X") is closed under taking unions and
intersections.

The indegree (outdegree, respectively) of a set V' of vertices of a directed
graph D =(V, A) is the number of arrows of D entering V’ (leaving V/,
respectively), and is denoted by da(V") (d4(V"), respectively).

If ¢ is a rational-valued function defined on a set X, and X' is a subset of X,
then, by definition,

c(X:= 2D cx).
x€X’
If ¢ is called a capacity function, then c¢(X") is the capacity of X'.
We note that directed graphs may have multiple arrows, but that we often
speak of ‘the arrow (v, w)’, where ‘an arrow from v to w’ would be formally
more correct.

1. Edmonds’ branching theorem
We first give, for the sake of completeness, a proof of a theorem of Edmonds

[2], by adapting the method of Lovasz [16]. By Edmonds’ branching theorem
usually is understood the case where V,=---= V, ={r}.
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Theorem 1. Let D = (V, A) be a directed graph, and let V1, . . ., V} be subsets of
V. Suppose dA(V')=h(V') for each nonempty subset V' of V, where h(V’)
denotes the number of i with V'NV,=@. Then A can be split into classes
Ay, ..., Ay such that for each i and each v in V there is a directed path in A;

starting in V; and ending in v.

Proof. By induction on =k, |V\ V||, the case V;="--= V=V being trivial.
Denote by
hx,...x(V') (1.1)

the number of i = 1,...,¢ with VN X;=0.
Suppose that V; # V (say), and consider the collection & of subsets V' of V

with
da(VY=hy, vw(V). (1.2)

Note that here the inequality = always holds, and that (1.2) implies that
V' V) # 8. Since the left-hand side of (1.2) is a submodular, and the right-
hand side is a supermodular function, the collection & is closed under unions
and intersections. Moreover, V € &, so there exists a minimal set V' in % with
V'ZV,. As

da(V\Vy)=hy, v(V)=da(V"), (1.3)

,,,,,,,,,,

there is an arrow a = (v, w) from V' N Vi to V'\V;. We show that

d:‘\a( V”) = h Viuw, Vs, ..., Vk(V") 9 (1.4)

for each nonempty subset V" of V. By induction this implies the theorem, as

we can split A\{a} into classes as required with respectto ViU {w}, V,,.. ., Vi,

and hence, by adding the arrow a to the first class, we obtain a splitting of A as

required for Vy,..., V.

To show (1.4), suppose V" # @ violates (1.4). Since
da(V)Z by, v(V)Z hviw v, (V) > dan(V) = da(V)~ 1,

(1.5)

we know that a enters V”, that w € V", and that

da(V")=h viow vy, v, (V)= h Voo (VT). (1.6)
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So V"isin % and hence VN V'isin & Since VVN V'Z ViasweE V' NV,
and since V'N V" # V' as v & V", this contradicts the minimality of V'. [

2. Pairs of submodular functions

In order to glue branchings together to obtain bi-branchings, we prove a
theorem on submodular functions, which has as direct corollaries the theorems
of Konig [13] and Gupta [11] on edge-colourings of bipartite graphs. Also the
more general theorem of De Werra [21] may be derived: if (V, E) is a bipartite
graph and k is a natural number, then E can be split into classes Ej, ..., E;
such that each vertex v is covered by min{d(v), k} of the E, where d(v)
denotes the degree of v.

Theorem 2. Let f; and f, be integral submodular set-functions on a set X, such
that

fiX") = max{|X"|, k} @2.1)

for each nonempty subset X' of X, and i =1,2. Then X can be partitioned into
classes X, . .., X such that

fiX"H)= i max{|X; N X'|, 1} (2.2)

j=1
for each nonempty subset X' of X, and i=1,2.

Proof. (i) We first prove the theorem for k =2. Let Y3, ..., Y, be the minimal
nonempty subsets of X with fi(Y;)=|Y]|. So the Y,...,Y, are pairwise
disjoint, since the collection of sets X' with f;(X") = | X’| is closed under taking
unions and intersections. Moreover, |Y;| =2 for each j, since fi(X')=2 for all
nonempty sets X'.

Similarly, let Z;, ..., Z, be the minimal nonempty subsets of X with fo(Z;) =
|Z;|. Again, Z,, ..., Z, are pairwise disjoint and contain at least two elements.

Hence X can be partitioned into classes X, X; such that both X; and X,
intersect each of Yi,..., Y, Z,..., Z. We prove that (2.2) is satisfied for this
choice of X; and X,. Let X' be a nonempty subset of X. If X;N X' #@ # X, N
X', then (2.2) follows from (2.1). So we may suppose that X, X' = #. Then X’
does not contain any of the Y,..., Y, Z,..., Z, implying that f,(X")>|X’|
and f»(X')>|X’|, which proves (2.2).

(ii) In order to prove the theorem for arbitrary k=2, let X;,..., X, be
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pairwise disjoint subsets of X such that (2.2) holds and such that [X, U -U
Xi| is as large as possible. If X;U---U X, =X we are finished, so suppose
that x € X\(X,U- - - U X;). Consider the collection & of all subsets X’ of X

with x € X' and
k
AX) =Y max{X; N X, 1} 23)
j=1

Suppose & #@. Since & is closed under unions and intersections (as the left-
and right-hand sides of (2.3) are submodular and supermodular, respectively),
there is a unique maximal element Y in &. If Y intersects each of the X; then

V=315 Y=Y N (XU UX) <Y\ <] Y], (2.4)

j=1

contradicting (2.1). So without loss of generality we may assume that Y N X, =
@. This implies that,

k
if x€ X" and X' N X, # #, then fi(X')> Y max{|X; N X', 1}.  (2.5)

j=1

Obviously, this is also true if F = @.
Similarly, there exists an index j such that

k
if x€ X" and X' N X; §, then f(X")> Y max{|X; N X", 1}.  (2.6)

j=1

If j =1 one easily checks that replacing X, by X; U{x} does not violate (2.2),
contradicting the maximality of X; U- - - U X,. So suppose j # 1, say j = 2.
Now (2.5) and (2.6) imply

k
fiX) = max{|(X; U X, U {x}) N X7, 2} + > max{|X; N X', 1} 2.7)
j=3
for each nonempty subset X’ of X, and | = 1,2. Define

fIXY=  min  A(X'UX)-S maxlX, 0 X7, 1) 2.8)
Jj=3

X"CX\(X1UXaUx})

for subsets X" of X,UX,U{x}, and i=1,2. The functions fi and f5 are



Min-max relations for directed graphs 269

submodular again, and from (2.7) we know that
fiX') = max{| X[, 2} 2.9)

for each nonempty subset X' of X, and i = 1,2. Hence, by part (i) above, we
can split X; U X, U {x} into classes X{ and X such that

fIX) = }2) max{| X} X’

j=1

, 1} (2.10)

for each nonempty subset X' of X;UX,U{x}, and i=1,2. Hence, by
definition (2.8) of the fi, the sets X1, X3, X3= X5,..., X=X form a collec-
tion of pairwise disjoint sets satisfying

fi(X)= i max{| X;N X’

j=1

1} @2.11)

for each nonempty subset X' of X, contradicting the maximality of
Xl u--- UXk. D

In fact, Theorem 2 may be considered as a theorem on the splitting of
vectors in polymatroids (cf. [1]), since it can be extended easily to: let f and f,
be integral submodular set-functions on a set X, and let b : X > 7 . be such that
f:(X")=max{b(X"), k} for each nonempty subset X' of X, and i=1,2. Then
there exist by, ..., by :X—7, such that b=b+---+b, and fi(X')=
Sk max{b;(X"), 1} for each nonempty subset X' of X, and i =1,2.

3. A bi-branching theorem

Combination of Theorem 1 and Theorem 2 gives a theorem on bi-branch-
ings.

Theorem 3. Let D = (V, A) be a directed graph, and let V be split into classes Vi
and Vi, such that any nonempty subset of Vi (of V., respectively) is entered
(left, respectively) by at least k arrows of D. Then A can be split into k
bi-branchings.

Proof. Let X be the set of arrows from V, to Vi, and define the set-functions f;
and f, on X by
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fu(X")= min{dA(V})| ViC V;, and each arrow in X’ ends in Vi},
fo(X')=min{d4(V3)| V3 C V,, and each arrow in X" starts in V3},
3.1)

for X'C X. It is easy to check that f; is submodular, and that f(X")=
max{|X|, k}, for each nonempty subset X' of X, and i=1,2. Hence, by
Theorem 2, we can split X into classes Xj, . .., X, such that

f(xX)= 3 maxllX; 0 XY, 1 (¢2)

j=1

for each nonempty subset X’ of X, and i = 1, 2. Let Y; (Z, respectively) be the
set of heads (tails, respectively) of arrows occurring in X, Consider any
nonempty subset Vi of V), and let X, be the set of arrows in X with head in
Vi If X, #6, by (3.2)

fX)= S max(X N X, 13 (33)

j=1

In particular,
da(V) = fi(Xo) = [ Xol + I{j1X; 1 Xo = B = | Xl + (V1) (B4)

where h(V]) is the number of j with Y; N Vi =@. Hence, as dx(V}) = |Xy, it
follows that

da(V)=h(Vi), (3.5)

where A’ is the set of arrows contained in V;. As (3.5) is true also if X;=0,
(3.5) is true for each nonempty subset Vi of Vi, and hence, by Theorem 1 we

can split A" into classes Aj, ..., Aj such that if V] is a nonempty subset of
V1\Yj, then at least one arrow in Aj enters Vi, for j=1,..., k.
Similarly, one can split the arrows contained in V, into k classes A%, ..., Al

such that if V; is a nonempty subset of V,\Z; then at least one arrow in A’
leaves Vy, forj=1,... k.

It follows that AJUX;UAY...,A UX,UA} vyields a splitting as
required. [

4. A special case of a conjecture of Edmonds and Giles

Theorem 3 is used to show the following theorem, which proves a special

case of a conjecture of Edmonds and Giles [3], announced independently by
D.H. Younger.
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Theorem 4. Let D = (V, A) be an acyclic directed graph, such that any pair of
source and sink is connected by a directed path, and let C be a subset of A such
that each directed cut of D intersects C in at least k arrows. Then C can be split
into classes Cy, . . ., C. such that each class C; intersects each directed cut.

Proof. We prove the theorem by induction on |V|+]|C|. Suppose the assertion
does not hold for D and C, and suppose this counterexample has been chosen
with |V]+|C| as small as possible.

Call a subset V' of V a kernel for D if @ # V' # V and d4(V')=0. We may
assume without loss of generality that if there is a directed path in D from v to
w, then (v, w) € A, as the adding of such arrows does not change the collection
of kernels. So we may think of D as just a partially ordered set.

() If V' is a kernel with do(V') =k, then |V'|=1 or |[V\V'| =1, i.e., directed
cuts intersecting C in exactly k arrows are determined by sources and sinks. For
suppose V' is a kernel with de(V')=k and |V'|=2 and |V\V'|=2. Let C’ be
the set of arrows in C with head in V', and let C” be the set of arrows in C
with tail in V\V". Contracting V\V’ to one point yields a smaller directed
graph D' = (V', A’), with C' C A’ and each directed cut of D’ intersecting C' in
at least k arrows. Hence, by induction, C’ can be split into classes Cj, ..., Ck
such that each directed cut of D' intersects each C}. Similarly, by contracting
V', thus obtaining the directed graph D", the projection C” of C can be split
into classes C4, . .., Cj such that each directed cut of D" intersects each C’. So
each Cjand each C’ contain exactly one of the arrows in C from V\V' to V,
and we may assume that C;N C% # @ if and only if i = j. Therefore, the sets
Ciu Y, ..., CiU C} partition C, and for any kernel V" of D with V" C V' or
VCV'or VVNV'=@ or V'U V"=V there is an arrow in C;U C entering
V", for each i. To prove that this is true for each kernel of D, let V" be a
kernel with

deue(V) =0 @D

for a certain i. So VN V"#@ and VVUV"# V, and hence V'N V" and
V'U V" are kernels of D again. Also

deue(V' O V) + dgued( V' U V< deue(V) + depe(V) . 42)

Since dzuc( V') = 1, at least one of the two left terms is 0. But vnv'cvc
V' U V”, and hence both left terms are nonzero.

(i) If a = (v, w) belongs to C, then v is a source of D or w is a sink of D. For
suppose not. Then, by (i), a is not in any directed cut intersecting C in
exactly k arrows. So removing a from C, by induction, C\{a} can be split into k
coverings for the directed cuts. Hence also C can be split in such a way.
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(iii) If a = (v, w) and a' = (v', w') belong to C, and (v', w) belongs to A, then
v’ is a source or w is a sink of D. For suppose v’ is not a source and w is not a
sink. By (i) this implies that v is a source and w' is a sink, and hence
a”" = (v, w’) belongs to A. Since a# a’ (as v is a source and v’ not), the set
C' = (C\{a, a’})U{a"} is smaller than C. Moreover, do(V’)= k for each kernel
V' of D, as the number of arrows in C’ meeting any source or sink is the same
as that for C, and, in general,

dig(V) S djga(V) S din(V) 1. (4.3)

So, by induction, C’ can be split into classes Ci, ..., Ci such that dg(V)=1
for each kernel V' and each i. Assuming a”€ Cj, we can replace Ci by
(Ci\{a"}) U{a, a}, and this yields, by (4.3), a splitting of C as required.

(iv) There exists a kernel V' for D, containing all sinks but no sources, such
that if (v, w)& C enters V', then v is a source and w is a sink. For let V' consist
of all sinks, together with all vertices u for which there is an arrow (v, w)in C
with » not a source, and (v, u) € A. One easily checks that V' is a kernel
containing all sinks but no sources. Moreover, suppose (¢, u) € C enters V'. If u
is a sink and ¢ is no source, then t € V', contradicting that (z, ) enters V'. If ¢
is a source and u is not a sink, then, by definition of V7, there is an arrow (v, w)
in C with v not a source, and (v, u) € A. But this contradicts (iii). Hence ¢ is a
source and u is a sink.

(v) Let V' be as in (iv), and let V"= V\V'. Let D' = (V, A’) be the directed
graph arising from D by replacing any arrow (v, w) of D by k parallel arrows
from w to v. One easily checks that

dauc(W)=k (4.4)

for each nonempty proper subset W of V. So, by Theorem 3, the set A'UC
can be split into k bi-branchings with respect to the splitting V', V". Let
Ci,. .., G be the intersections of these bi-branchings with C. Hence

daug(W)=1 (4.5)

for each nonempty proper subset W of V with WC V' or V'C W, and
j=1,..., k. We show that each C, intersects each directed cut, which finishes
our proof.
Let W be a kernel for D, and let j=1,..., k. We prove that at least one
arrow in C; enters W. Note that if W contains any source, it contains all sinks.
First suppose that W contains no sources of D. By (4.5),

dasg(WNV)=1, (4.6)
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Since W N V' again is a kernel of D, we have dz(W N V') =0, and hence there
is an arrow in C; entering W N V. Since, by (iv), each arrow in C entering V'
starts in a source, and since W does not contain any source, this arrow enters
W also.

Second, if W contains every sink of D, by symmetric arguments (now
considering W U V') again at least one arrow of C; enters W. [

Remark. There is another special case in which the conjecture of Edmonds
and Giles is true, namely if D arises from a directed tree T, with vertex set V,
by taking the transitive closure (i.e., A ={(v, w)| there is a directed path in T
from v to w}. This can be shown using the total unimodularity of matrices
involved. One may ask for a common generalization of this special case and
Theorem 4 above.

5. An extension of Theorem 4

We now extend Theorem 4, thus obtaining a common generalization of the
Theorems 3 and 4 (cf. Section 0), by the following observation.

Observation. Let D = (V, A) and D'=(V, A’) be directed graphs. Let a =
(v, w) be an arrow of D such that there exist vertices v’ and w’, and directed
paths in D’ from v to v/, from w’ to v’, and from w’ to w (cf. Fig. 3, where
wriggled lines represent directed paths in D). The vertices v, v’, w', w need

not to be distinct.
v ﬂ? w
v' Z\,\, W\/\/v’v‘vz w'

Fig. 3.

Now let v” and w"” be two new vertices, let Vo= VU{v", w"}, a” = (v", w"),
A= (A\{a}) U{a"}, and Aj= A’ U{(v, v"), (v", "), (", "), (W', w"), (W", w)h,
D, = (Vy, Ay), Di= (Vy, Ag) (cf. Fig. 4, where heavy and light lines stand for
arrows of Dy and Dy, respectively). Then one easily checks that, for each subset
A" of A, A" is a strong connector for D', if and only if Ajis a strong connector
for D), where A= A" if aZ A", and A} = (A"\{a})U{a"}if a € A”. Hence the
hypergraphs of strong connectors for the two cases are isomorphic. Therefore,
also the hypergraphs of minimal strong cuts are isomorphic (as these are the
‘blockers’ of the first ones).
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This gives us the invariance of certain min-max relations under these
transformations. We shall apply this observation to derive the following
theorem from Theorem 4, and Theorem 6 from the Lucchesi-Younger
theorem.

Theorem 5. Let D' = (V, A’) be an acyclic directed graph, such that each pair of
source and sink is connected by a directed path. Let D = (V, A) be a directed
graph. Then the maximum number of pairwise disjoint strong connectors for D' is
equal to the minimum size of a strong cut induced by D'.

Proof. We may suppose that D’ is transitive, i.e., that if (», v) and (v, w) are in
A’, then also (4, w) is in A’. We prove the theorem by induction on the number
of arrows a = (v, w) in A with (w, v) not in A’. If this number is 0, the theorem
is equivalent to Theorem 4.

So suppose a = (v, w)EA and (w,v) & A’. Let v’ be a sink of D' with
(v,v")E A’, and let w’ be a source of D' with (w’, w)E A’. By assumption
(w',v")E A', and hence we may make digraphs Dy and Dy as in the Obser-
vation above. Since strong connectors, and strong cuts, determine isomorphic
hypergraphs in the two cases, the conditions of the theorem hold also for D,
and D,. Since the number of arrows in D, which do not occur in reversed
direction in Dy, is one less than for D and D', we can split A, as required, and
hence, since the hypergraphs are isomorphic, we can split A as required. [J

One easily derives the following weighted version.

Corollary 5a. Let D' = (V, A’) be an acyclic directed graph, such that each pair
of source and sink is connected by a directed path. Let D = (V, A) be a directed
graph, and let ¢ : A—> 7. be a capacity function. Suppose that the minimum
capacity of a strong cut induced by D' is at least k. Then there are k strong
connectors for D' such that no arrow a is in more than c(a) of these strong
connectors.

Proof. Replace each arrow a of D by c(a) parallel arrows, and apply Theorem
5. O
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6. A similar extension of the Lucchesi-Younger theorem

We can apply the Observation of Section 5 also to obtain a somewhat more
general form of the Lucchesi-Younger theorem [18] (cf. [16]). The Lucchesi~
Younger theorem says that the minimum size of a set of arrows in a directed
graph D = (V, A) intersecting each directed cut, is equal to the maximum
number of pairwise disjoint directed cuts. It is easy to derive, by replacing
arrows by directed paths, from this a weighted version: given a length function
l:A—2Z,, the minimum length of a set of arrows intersecting all directed cuts,
is equal to the maximum number of directed cuts such that no arrow a is in
more than I(a) of these directed cuts.

The more general theorem is as follows.

Theorem 6. Let D = (V, A) and D' = (V, A') be directed graphs, such that for
each arrow a = (v, w) of D there are vertices v' and w' and directed paths in D'
from v 1o v, from w' to v', and from w' to w. Letl: A— 7 . be a length function.
Then the minimum length of a strong connector for D' is equal to the maximum
number of strong cuts induced by D' such that no arrow a is in more than l(a) of
these strong cuts.

Proof. The proof is similar to that of Theorem 5. [
A direct corollary is another ‘bi-branching theorem’.

Corollary 6a. Let D = (V, A) be a directed graph, and let V be split into classes
V' and V". Letl: A—>Z . be a length function such that each bi-branching has
length at least k. Then there are nonempty proper subsets Vi, ..., V, of V such
that V;C V' or V' C V, for each i, and no arrow a enters more than l(a) of the
V.

Proof. Apply Theorem 6, with A’ ={(v/, v")|v'€ V', v"€ V"}. O

Direct consequences to Corollary 6a are Fulkerson’s branching theorem [9]
and Koénig’s theorem [15] on minimal coverings in bipartite graphs. Note that,
conversely, the cardinality version of Corollary 6a (i.e., [=1) can be derived
easily from Konig’s theorem.

7. Sub- and supermodular functions on directed graphs

Edmonds and Giles [3] gave a common generalization of the Lucchesi-
Younger theorem [18] (cf. Section 6) and Edmonds’ matroid intersection
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theorem [1], by considering submodular functions defined on the vertex set of a
directed graph. In fact, also the extension of the Lucchesi-Younger theorem
given above (Theorem 6) may be included in such a framework—see Theorem
7 below.

Note that a collection &% of subsets of a set V. containing @ and V/, is closed
under unions and intersections, if and only if there is a directed graph
D' =(V,A’) such that F={V'C V|da(V')=0}. The following theorem
extends Theorem 6 above and another theorem of Frank [5].

Theorem 7. Let & be a collection of subsets of V and let f be an integral function
defined on %, such that if Vi, V,EF and ViN Vo, #@, ViUV, #V, then
VINV,EF, ViU VaE€ F and f(ViN Vi) + (VLU Vo) = F(Vy) + f(V2). Let fur-
thermore a directed graph D = (V, A) be given such that if Vi, V,, V3€ F with
VinVoN V=0 and V,U V,U V3=V, then no arrow of D enters both V| and
V. Let 1: A—>Z ., be a length function. Then the minimum length of a set
A" C A such that each V' € F\{@, V} is entered by at least f(V') arrows in A", is
equal to the maximum value of

ﬁllf(vs), (7.1)

where Vi, ..., V, are sets in F\{0, V} such that each arrow a of D enters at most
l(a) of the V,.

(The theorem asserts that both sides of a certain linear programming duality
equation are achieved by integral solutions—cf. Section 8.)

Theorem 7 can be proved with the standard methods (using cross-free
collections, tree-representations, total dual integrality), as described by
Edmonds and Giles [3].

Note that the condition given in the second sentence of Theorem 7 is just the
analogue of the condition given in the first sentence of Theorem 6. In order to
obtain a similar generalization of Theorem 5, one easily checks that a collection
&%, closed under unions and intersections, is the collection of sets V' with
da(V')=0 for some digraph D’= (V, A’) with the property that, after con-
tracting the strong components of D’, each pair of source and sink is connected
by a directed path, if and only if there are no sets Vi, V,, V3 in #\{@, V} with
vinv,NVs=@and VU V,U V3= V.

Now the following possible generalization of Theorem 5 is not true: let & be
a collection of subsets of V with the properties described in the previous
paragraph, let f be a supermodular function on %, and let D = (V, A) be a
directed graph, such that each set V' in F\{f, V} is entered by at least f(V")
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arrows of D. Suppose f=fi+f, where f and f, are nonnegative integral
supermodular functions on &. Then A can be split into classes A and A, such
that each set V' in F\{@, V} is entered by at least f,(V’) arrows in A, for
i = 1,2. A counterexample to this is given by taking D as in Fig. 5, & being the
collection of all subsets of V\{r}, and f = f, + f,, where, for V' in &, f,(V')=1,
fo(VY=1if s€ V', and fo(V)=0if s& V".

S

Q

r

Fig. 5.

The following generalization of Theorem 2 and Theorem 5 might be true.

Let & be a collection of subsets of a set V, closed under unions
and intersections, such that for no V,, V3, V3in #\{§, V} both
ViNnv,N Vy=@and ViU V,U V= V.Let f be asubmodular
function on & such that f(V') = k for each V' in #\{@, V}. Let
D = (V,A) be a directed graph such that dz(V)=
f(V") for each V' in #\{@, V'}. Then A can be split into
classes Ay, ..., A, such that for each V' in #\{@, V} one
has S, max{d(V'), 1} < f(V").

(12)

By taking f(V')= da(V') Theorem S follows. By taking A to be a collection of
disjoint arrows, with set V' of heads, and & to be the collection of all V" with
V"C V' or V'C V", Theorem 2 follows.

The question remains whether both the generalizations of Edmonds-Giles
type, and assertions of the type of Theorem 2 and problem (7.2) above, fit into
one framework. Also at another point submodular functions, or rather
matroids, appear, namely at Fulkerson’s branching theorem. This theorem may
be interpreted as a min-max relation for the minimum weight of a common
base of two matroids (cf. [1]). One may ask whether the more general
bi-branching theorem (Corollary 6a), or even Theorem 6, can be formulated in
such a way.

8. Polyhedral representations and polynomial algorithms

As usual with min-max relations, Theorems 5 and 6 above allow a poly-
hedral formulation, or, equivalently, a formulation in terms of linear pro-



278 A. Schrijver

gramming. By the ellipsoid method as described in [10] this often yields the
existence of polynomial algorithms.

Let D and D’ be as in Theorem 6, and let ¢ : A—Z .. Consider the linear
programming problem of finding

min >, c(a)x(a) 8.1

acA

where x : A— Q. such that

0<x(a)<1 ifa€A,
8.2)

> x(a)=1 if A”is a strong cut,
acgA"

where we mean a ‘strong cut’ to be induced by D’. By the Duality Theorem of
linear programming, (8.1) is equal to

max > y(A"), (8.3)

A" strong cut

where, for each strong cut A”, y(A”) is a rational number such that

A"y=0, if A”is a strong cut,
y(A") g 8.4)

S y(A')<c(a), ifa€A.

A"3a

Now, Theorem 6 asserts that (8.1) and (8.3) are attained by integral functions x
and y. So the system of linear inequalities (8.2) is totally dual integral (cf. [3]),
and a function x satisfies (8.2) if and only if x is a convex linear combination of
incidence vectors of strong connectors for D’.

If, moreover, D’ is acyclic and each pair of source and sink of D’ is
connected by a directed path, we obtain similar conclusions if we exchange the
terms ‘strong cut’ and ‘strong connector’, as follows from Corollary 5a. Note
that in the latter case, by the theory of blocking polyhedra of Fulkerson [8], if
D and D’ satisfy the weaker conditions of Theorem 6 only, (8.1) is attained by
an integral vector x (i.e., by the incidence vector of some strong cut).

Therefore, by the ellipsoid method there exists a polynomial algorithm for
finding minimum length strong connectors, if and only if there exists a
polynomial algorithm for finding minimum capacitated strong cuts. However,
the existence of the latter algorithm follows easily from the Ford—Fulkerson
min-cut algorithm (by giving the arrows of D’ sufficiently large capacity), and
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hence minimum length strong connectors can be found in polynomial time.
Also a maximum packing of strong cuts (i.e., an integer solution for (8.3)) can
be found in polynomial time, by applying the usual techniques of making cuts
cross-free (cf. [10]). Clearly, minimum length strong connectors and maximum
packings of strong cuts can be found also by adapting (e.g., by the Observation
of Section 5) the existing polynomial algorithms for the Lucchesi-Younger
theorem [6, 12, 17].

It remains to show that the splitting of A as described in Theorem 5 and
Corollary 5a can be found efficiently. However, our proof above yields a
polynomial algorithm. Indeed, the proof of Theorem 5 reduces this theorem to
Theorem 3. Since this reduction can be carried out in polynomial time, we need
to show that a splitting into bi-branchings can be found efficiently. But the
splitting into bi-branchings is obtained by first splitting the ‘crossing arrows’
(from V, to V)), which splitting can be found by Theorem 2. After that this
splitting is extended to a splitting into bi-branchings by Theorem 1. Now to
derive polynomial algorithms from the proofs of Theorem 1 and Theorem 2,
one needs only a method to find one, or all, minimal nonempty subsets V' with
f(V')y= h(V"), where f is submodular and k is supermodular, with # <{. But
this can be reduced easily to the problem of finding a set minimizing a
submodular set-function, and this can be solved in polynomial time [10].

Also the splitting described in Corollary 5a, i.e., an integral solution y for
(8.3), with strong connectors instead of strong cuts, can be found in time
polynomially bounded by the size of the problem. Note that this size is

[VI+|A]+ A+ 3 log(c(a)+ 1), 8.5)

aEA

so, to obtain a good algorithm, we cannot just replace each arrow a by c(a)
parallel arrows. However, by the ellipsoid method a fractional solution y of
(8.3) (again with ‘strong connector’ instead of ‘strong cut’), can be obtained in
polynomial time, such that the number of strong connectors A” with y(A")>0
is at most |A|. Now let

c'(a):= 2 (y(A")- ly(AMD), 8.6)

A'Da

where the sum ranges over strong connectors A”, and where | | denotes lower
integer part. Since c¢’'(a)=<|A| we can replace each arrow a by c'(a) parallel
arrows, and then find in this new directed graph as many as possible pairwise
disjoint strong connectors, by the method described above for Theorem 35, i.e.,
we find integers y’'(A”)= 0 for each strong connector A". One easily checks
that [y(A")] + y'(A”) is an integer solution for (8.3).
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